Chem. Ber. 102, 1404 – 1409 (1969)

Hans-Joachim Kabbe

Isonitrile, H¹⁾

2.3-Bis-alkylimino-oxetane aus Carbonylverbindungen und Isonitrilen²⁾

Aus dem Wissenschaftlichen Hauptlaboratorium der Farbenfabriken Bayer AG, Leverkusen (Eingegangen am 9. Oktober 1968)

Isonitrile reagieren mit Aldehyden und Ketonen in Gegenwart katalytischer Mengen Bortrifluorid zu 2.3-Bis-alkylimino-oxetanen (10).

Alicyclische Ketone wie 1 lassen sich mit Isonitrilen (2) in Äther/Petroläther in Gegenwart nahezu äquimolarer Mengen Bortrifluorid zu den ungesättigten Ketocarbonsäureamiden (4) umsetzen, wenn man die als Zwischenprodukte vermuteten Ketimine (3) mit wäßrigen Säuren hydrolysiert³⁾.

Obwohl auch Aceton analog reagiert⁴⁾, entstehen mit Chloraceton andersartige Produkte. Statt des gewünschten Amids (5) erhielten wir in Abhängigkeit von der Hydrolysendauer (eine bzw. dreißig Minuten bei 25°) die Verbindung 6 oder das Hydroxy-ketoamid 7.

Die Struktur von 6 als 2.3-Bis-tert.-butylimino-4-methyl-4-chlormethyl-oxetan ergibt sich aus den folgenden Tatsachen: In 6 sind noch sämtliche Atome der Ausgangsstoffe enthalten. Das Kernresonanzspektrum zeigt vier nicht aufgespaltene Banden im Verhältnis 9:9:3:2 bei $\delta=1.31,\ 1.39,\ 1.53$ und 3.76 ppm (TMS,

I. Mitteil.: H. J. Kabbe, Angew. Chem. 80, 406 (1968); Angew. Chem. internat. Edit. 7, 389 (1968).

Farbenfabriken Bayer AG (Erf. H. J. Kabbe), Deutsche Patent-Anmeldung P 1593868 (6. 4. 1967), Belg. Pat. 713293 (5. 4. 1968).

³⁾ E. Müller und B. Zeeh, Liebigs Ann. Chem. 696, 72 (1966).

⁴⁾ B. Zeeh und E. Müller, Liebigs Ann. Chem. 715, 47 (1968), sowie eigene Versuche.

Varian A 60, 60 MHz, CDCl₃). Im Infrarotspektrum treten weder Amid- noch NH-Banden auf, sondern nur ein Doppelpeak um 1720–1730/cm. Das Oxetan 6 ist als Primärprodukt dieser neuen Keton/Isonitril-Reaktion anzusehen, während 7 daraus durch Wasseranlagerung und Ketiminhydrolyse entsteht⁵⁾.

Nachdem die Struktur von 6 feststand, wurden die Herstellungsbedingungen in folgender Weise geändert: 1) Keton und Isonitril wurden im stöchiometrischen Verhältnis 1:2 eingesetzt; 2) zur Vermeidung von Nebenreaktionen⁵⁾ wurde der BF₃-Zusatz auf katalytische Mengen reduziert; 3) die Reaktionsgemische wurden nur neutral oder schwach basisch aufgearbeitet, um jegliche Hydrolyse (z. B. zu 7) auszuschalten. Unter diesen verbesserten Bedingungen erhält man 6 nach vierstündiger Reaktion bei 0 bis 25° in 92 proz. Ausbeute!

Auch zahlreiche andere Kombinationen von Carbonylverbindungen und Isonitrilen setzen sich zu den Bis-imino-oxetanen 10 um: Aldehyde reagieren ebenso wie Ketone, aliphatische wie aromatische Verbindungen, und die Substituenten können weitgehend variiert werden (siehe Tabelle im Versuchsteil). Die Isonitrile reagieren um so besser, je höher sie am α -C-Atom substituiert sind; da sie als nucleophile Partner in die Reaktion eintreten (s. Reaktionsmechanismus S. 1406), sollte der durch Hyperkonjugation verursachte negativierende Einfluß der Alkylgruppen günstig wirken.

$$\begin{array}{c} \begin{array}{c} O \\ R-\stackrel{||}{C} \\ R \end{array} + 2 CN-R^2 \longrightarrow \begin{array}{c} O-C=N-R^2 \\ R-\stackrel{||}{C}-C=N-R^2 \end{array}$$

$$\begin{array}{c} R \\ R \end{array}$$

R und R¹: H, Alkyl, substit. Alkyl, Phenyl, substit. Phenyl
R²: a: Isopropyl
b: Isobutyl
c: tert.-Butyl
d: Cyclohexyl
e: Allyl

Dem Formaldehyd gebührt ein besonderer Hinweis: Die Oxetansynthese gelingt nur mit monomerem, gasförmigem CH₂O. Trioxan und Paraformaldehyd dagegen bleiben unter den Reaktionsbedingungen unverändert, während gleichzeitig das tert.-Butylisonitril dimerisiert¹⁾.

In diesem Zusammenhang sei auch auf die von Zeeh untersuchten Isonitril/Keton-Umsetzungen hingewiesen, bei denen unter bestimmten Strukturvoraussetzungen der beiden Ausgangsstoffe Indole⁶⁾ bzw. Indolenine⁷⁾ entstehen. In beiden Fällen sind

⁵⁾ Über die Aufspaltung dieser Oxetane, die je nach den Reaktionsbedingungen zu Verbindungen des Typs 3 oder 7 führt, siehe die nachstehende Arbeit.

B. Zeeh, Tetrahedron Letters [London] 1967, 3881; Chem. Ber. 102, 678 (1969).
 B. Zeeh, Chem. Ber. 101, 1753 (1968).

Oxetane als Zwischenstufe anzunehmen. Dagegen gehört die von *Gamberjan* und Mitarbb.⁸⁾ untersuchte Reaktion von hochhalogenierten Ketonen mit Isonitril (ohne Säurezusatz!), z. B. zu 11, nicht zu diesen zu Oxetanen oder über Oxetane verlaufenden Umsetzungen.

Der Mechanismus der Oxetansynthese

Die bisherigen Beobachtungen deuten darauf, daß die Bis-imino-oxetane in einer mehrstufigen Additionsfolge $(8 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 10)$ entstehen:

Dieser Mechanismus wird dadurch gestützt, daß bei der Reaktion von Acetaldehyd mit tert.-Butylisonitril (9c) in Äthanol außer dem Oxetan in vergleichbarer Ausbeute noch der Imidsäureester 15 entsteht, der bei der Hydrolyse Milchsäure-äthylester (16) liefert. Dieses Ergebnis läßt sich zwanglos erklären, wenn man als gemeinsame Zwischenstufe das Carbonium-Ion 13 annimmt, das entweder mit weiterem Isonitril über 14 zum Oxetan 10 reagiert oder Äthanol zu 15 addiert:

Saegusa und Mitarbb. haben die Umsetzung von Cyclohexylisonitril mit Aceton bzw. Acetaldehyd untersucht^{9,10)} und schlagen für diese und verwandte Carbonyl/ Isonitril-Reaktionen das Iminooxiran 17 als gemeinsame Zwischenstufe vor. Während jedoch 17 aus 13 durch BF₃-Abspaltung durchaus entstehen könnte, sollte die erneute Ringöffnung unter dem Einfluß von Säuren zu der amidartigen Struktur 18 und nicht zurück zu 13 führen¹¹⁾; die Addition von nucleophilen Addenden an 18 würde nun

⁸⁾ N. P. Gamberjan, E. M. Rokhlin, J. V. Zeihman, Ching-Yun Chen und J. L. Knunyanc, Angew. Chem. 78, 1008 (1966); Angew. Chem. internat. Edit. 5, 947 (1966).

⁹⁾ T. Saegusa, N. Taka-ishi und H. Fujii, Polymer Letters [London] 5, 779 (1967).

¹⁰⁾ T. Saegusa, N. Taka-ishi und H. Fujii, Tetrahedron [London] 24, 3795 (1968).

¹¹⁾ Daß eine Säure am Iminostickstoff und nicht am Sauerstoff angreift, läßt sich bei den ringhöheren Bis-imino-oxetanen auch experimentell beweisen⁵⁾.

jedoch am ursprünglichen Carbonylkohlenstoff erfolgen und damit zu Produkten führen, die von 10 bzw. 15 verschieden sind. Aufgrund dieser Bedenken halten wir 13 und nicht 17 für die richtige Oxetan-Zwischenstufe.

$$R - C \stackrel{\text{H}^{\oplus}}{=} C \stackrel{\text{H}^{\oplus}}{=} N - R^{2} \longrightarrow C \stackrel{\text{R}}{=} C - NH - R^{2}$$

Herrn Dr. N. Joop danke ich für seine Hilfe bei der Aufnahme und Interpretation von Kernresonanzspektren und Herrn W. Junker für seine aufmerksame und geschickte Mitarbeit.

Beschreibung der Versuche

Schmelz- und Siedepunkte sind nicht korrigiert.

2.3-Bis-tert.-butylimino-4-methyl-4-chlormethyl-oxetan (6): 18.4 g (0.2 Mol) Chloraceton, 33.2 g (0.4 Mol) tert.-Butylisonitril (9c) und 40 ccm Petroläther werden innerhalb von 40 Min. mit einer Lösung von 1 ccm Bortrifluoridätherat in 40 ccm Äther unter Eiskühlung versetzt; dabei steigt die Temperatur bis auf 12° an. Man rührt 4 Stdn. bei Raumtemp. nach, gießt auf 300 ccm NaHCO₃-Lösung und extrahiert den organischen Teil mit Methylenchlorid. Nach Trocknen über Na₂SO₄ wird im Rotationsverdampfer eingeengt; Destillation über eine 15-cm-Kolonne (Füllung mit Maschendrahtringen) liefert 47.5 g (92%) 6 vom Sdp._{0.06} 60—65°, das in der Vorlage zu farblosen Kristallen vom Schmp. 48—50° erstarrt.

Führt man die Reaktion unter den von E. Müller und $Zeeh^{3}$ angegebenen Bedingungen (Keton: Isonitril: BF₃ = 1:1.2:0.7, 2 Stdn. 0°, saure Hydrolyse) durch, so erhält man bei kurzfristiger (1 Min.) Hydrolyse ein Oxetan 6, das ca. 25% seiner tert.-Butylgruppen durch Isobutylenabspaltung verloren hat. Halbstündige Hydrolyse liefert 3-Hydroxy-2-oxo-3-chlormethyl-buttersäure-tert.-butylamid (7), Ausb. 40%, Schmp. $78-79^\circ$.

Die weiteren Oxetane 10 wurden analog hergestellt, also aus Carbonylverbindung, Isonitril und BF₃-Ätherat im Verhältnis von 1:2 bis 2.2:0.02 bis 0.05 in 1 bis 24 Stdn. bei Temperaturen zwischen -10 und $+25^{\circ}$. Am Verschwinden der Isonitril-Komponente (IR-Proben!) läßt sich der Fortgang der Reaktion sehr einfach verfolgen. Einige Daten gehen aus der Tabelle hervor.

Milchsäure-äthylester (16): 8.8 g (0.2 Mol) Acetaldehyd, 25 ccm tert.-Butylisonitril (9c) und 100 ccm Äthanol werden bei -5° in ca. 5 Min. mit einer Lösung von 25 ccm BF_3 -Ätherat in 40 ccm Äther unter guter Kühlung versetzt. Man rührt noch 10 Min. bei 0° nach, gießt auf 300 ccm gesätt. Na₂CO₃-Lösung und extrahiert die organischen Bestandteile mit Methylenchlorid. Durch Destillation werden 9 g eines schlecht trennbaren Gemischs (Sdp._{0.1} 30–95°) erhalten, das zu etwa gleichen Teilen aus dem Oxetan (10c, R = CH₃, R¹ H) und Imidsäureester 15 besteht. 14 g dieses Gemischs werden in 50 ccm Tetrahydrofuran gelöst und bei 5–10° mit 50 ccm 2n HCl 1 Stde. verrührt. Extraktion mit Methylenchlorid und Destillation liefert 3 g (ca. 10%) 16 vom Sdp.₄₂ 75°, das in seinen physikalisch-chemischen Eigenschaften mit im Handel befindlichen Präparaten übereinstimmt. (Das Oxetan geht unter diesen Bedingungen in ein hochsiedendes Hydroxyketoamid vom Typ 7 über, so daß die Trennung der Hydrolyseprodukte keine Schwierigkeiten bereitet.)

Dargestellte Oxetane 10

	R	R¹	-oxetan	Ausb.	Schmp. (Sdp./Torr)	Analyse Ber. Gef.				
I: Aus tertButylisonitril (R ² = tertButyl)										
a)	Н	Н	2.3-Bis-tertbutyl- imino-	~4045	92-93°	C ₁₁ H ₂₀ N ₂ O (196.3) C 67.30 H 10.27 C 67.1 H 10.4 N 14.27 N 14.0				
, b)	CH ₃	н	2.3-Bis-tertbutyl- imino-4-methyl-	91	(78°/12)	C ₁₂ H ₂₂ N ₂ O (210.3) C 68.52 H 10.54 C 68.5 H 10.7 N 13.32 N 13.5				
c)	n-C ₃ H ₇	Н	2.3-Bis-tertbutyl- imino-4-propyl-	73	(60°/0.03)	C ₁₄ H ₂₆ N ₂ O (238.4) C 70.54 H 11.00 C 70.6 H 11.0				
d)	Cl ₃ C	Н	2.3-Bis-tertbutylimino 4-trichlormethyl-	o - 68	60°	C ₁₂ H ₁₉ Cl ₃ N ₂ O (313.7) C 45.94 H 6.11 C 45.9 H 6.2 Cl 33.91 N 8.93 Cl 34.2 N 8.9				
e)	H ₃ C-	Н	2.3-Bis-tertbutylimine 4-[4-methyl- cyclohexen-(3)-yl]-	0- 80	(115°/0.05)	C ₁₈ H ₃₀ N ₂ O (290.4) C 74.43 H 10.41 C 74.4 H 10.5				
f)	C ₆ H ₅	Н	2.3-Bis-tert,-butylimine 4-phenyl-	0- 74	75 - 76°	C ₁₇ H ₂₄ N ₂ O (272.4) C 74.96 H 8.88 C 75.2 H 8.9 N 10.28 N 10.3				
g)	<i>p</i> -Cl-C ₆ H ₄	Н	2.3-Bis-tertbutylimine 4-[4-chlor-phenyl]-	o - 73	98 100°	C ₁₇ H ₂₃ ClN ₂ O (306.8) C 66.54 H 7.55 C 66.5 H 7.4 Cl 11.56 Cl 11.6				
h)	p-CH ₃ CO - C ₆ H ₄	н	2.3-Bis-tertbutylimine 4-[4-acetoxy- phenyl]-	o- 60	9294°	C ₁₉ H ₂₆ N ₂ O ₃ (330.4) C 69.07 H 7.93 C 69.0 H 8.0 N 8.48 N 8.5				
i)	C ₆ H ₅ CH ₂	Н	2.3-Bis-tert,-butylimine 4-benzyl-	o - 93	(100°/0.05)	C ₁₈ H ₂₆ N ₂ O (286.4) C 74.48 H 9.15 C 74.8 H 9.2 N 9.78 N 9.8				
k)	CH ₃	СН₃	2.3-Bis-tertbutylimine 4.4-dimethyl-	o- 88	(76°/10)	C ₁₃ H ₂₄ N ₂ O (224.3) N 12.49 O 7.13 N 12.2 O 7.4				
1)	CICH ₂	CICH₂	2.3-Bis-tertbutylimin 4.4-bis-chlormethyl-	o- 96	(90°/0.07)	C ₁₃ H ₂₂ Cl ₂ N ₂ O (293.2) C 53.24 H 7.56 C 53.0 H 7.6 Cl 24.18 N 9.55 Cl 24.3 N 9.5				
m)	CH ₃	(CH₃O) ₂ CH	2.3-Bis-tertbutylimin 4-methyl- 4-dimethoxymethyl-	o - 76	(70°/0.05)	C ₁₅ H ₂₈ N ₂ O ₃ (284.4) C 63.36 H 9.92 C 63.6 H 9.9 N 9.85 N 10.0				
n)	CH₃COCH₂	СН₃СОСН2	2.3-Bis-tertbutylimin 4.4-bis-acetoxy- methyl-	o- 84	(122°/0.06)	C ₁₇ H ₂₈ N ₂ O ₅ (340.4) N 8.23 O 23.50 N 8.2 O 23.2				
0)	-[CH ₂	2]5~	2.3-Bis-tertbutylimin 4.4-pentamethylen-	o~ 93	55 57°	C ₁₆ H ₂₈ N ₂ O (264.4) C 72.68 H 10.67 C 73.0 H 10.8 N 10.59 N 10.5				

Fortsetzung der Tabelle

	R	R1	R ²	-oxetan	Ausb.	Schmp. (Sdp./Torr)	Analyse Ber. Gef.
11:	Aus anderen	Isonitr	ilen R ² NC				
p)	CH ₃	Н	(CH ₃) ₂ CH	2.3-Bis-isopropyl- imino-4-methyl-	73	(73°/11)	C ₁₀ H ₁₈ N ₂ O (182.3) C 65.89 H 9.96 C 65.7 H 10.0 N 15.37 O 8.78 N 15.3 O 8.9
q)	C ₆ H ₅	Н	(CH ₃)₂CH	2.3-Bis-isopropyl- imino-4-phenyl-	63	40-41°	C ₁₅ H ₂₀ N ₂ O (244.3) C 73.73 H 8.25 C 73.5 H 8.4
r)	(CH ₃) ₂ CH	Н	$H_2C = CH - CH_2$	2.3-Bis-allylimino- 4-isopropyl-	53	(80°/0.06)	C ₁₂ H ₁₈ N ₂ O (206.3) C 69.86 H 8.79 C 69.4 H 8.8 N 13.58 N 13.5
s)	CH ₃	CH ₃	c-C ₆ H ₁₁	2.3-Bis-cyclohexyl- imino-4.4-dimethyl-	60	57-59° (Lit. ¹⁰⁾ : 59-60°)	C ₁₇ H ₂₈ N ₂ O (276.4) C 73.86 H 10.21 C 73.9 H 10.4 N 10.13 N 10.4
t)	(CH ₃) ₂ CH	Н	(CH ₃) ₂ CH~CH ₂	2.3-Bis-isobutylimino 4-isopropyl-	- 70	(80°/0.001)	C ₁₄ H ₂₆ N ₂ O (238.4) N 11.75 N 12.0
							[472/68]